Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Biomolecules ; 13(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509195

RESUMO

Upon exposure to biotic and abiotic stress, plants have developed strategies to adapt to the challenges imposed by these unfavorable conditions. The energetically demanding translation process is one of the main elements regulated to reduce energy consumption and to selectively synthesize proteins involved in the establishment of an adequate response. Emerging data have shown that ribosomes remodel to adapt to stresses. In Arabidopsis thaliana, ribosomes consist of approximately eighty-one distinct ribosomal proteins (RPs), each of which is encoded by two to seven genes. Recent research has revealed that a mutation in a given single RP in plants can not only affect the functions of the RP itself but can also influence the properties of the ribosome, which could bring about changes in the translation to varying degrees. However, a pending question is whether some RPs enable ribosomes to preferentially translate specific mRNAs. To reveal the role of ribosomal proteins from the small subunit (RPS) in a specific translation, we developed a novel approach to visualize the effect of RPS silencing on the translation of a reporter mRNA (GFP) combined to the 5'UTR of different housekeeping and defense genes. The silencing of genes encoding for NbRPSaA, NbRPS5A, and NbRPS24A in Nicotiana benthamiana decreased the translation of defense genes. The NbRACK1A-silenced plant showed compromised translations of specific antioxidant enzymes. However, the translations of all tested genes were affected in NbRPS27D-silenced plants. These findings suggest that some RPS may be potentially involved in the control of protein translation.


Assuntos
Arabidopsis , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Mensageiro/genética , Biossíntese de Proteínas , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163686

RESUMO

Three Dysteria species, D. crassipes Claparède & Lachmann, 1859; D. brasiliensis Faria et al., 1922; and D. paracrassipes n. sp., were collected from subtropical coastal waters of the East China Sea, near Ningbo, China. The three species were studied based on their living morphology, infraciliature, and molecular data. The new species D. paracrassipes n. sp. is very similar to D. crassipes in most morphological features except the preoral kinety, which is double-rowed in the new species (vs. single-rowed in D. crassipes). The difference in the small ribosomal subunit sequences (SSU rDNA) between these two species is 56 bases, supporting the establishment of the new species. The Ningbo population of D. crassipes is highly similar in morphology to other known populations. Nevertheless, the SSU rDNA sequences of these populations are very different, indicating high genetic diversity and potentially cryptic species. Dysteria brasiliensis is cosmopolitan with many described populations worldwide and four deposited SSU rDNA sequences. The present work supplies morphological and molecular information from five subtropical populations of D. brasiliensis that bear identical molecular sequences but show significant morphological differences. The findings of this study provide an opportunity to improve understanding of the morphological and genetic diversity of ciliates.


Assuntos
Cilióforos/classificação , Cilióforos/genética , Filogenia , Sequência de Bases , China , DNA Ribossômico/genética , Geografia , Funções Verossimilhança , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
3.
Microbiol Spectr ; 9(3): e0099021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34730381

RESUMO

Pallas's squirrel (Callosciurus erythraeus) was introduced in Japan in the 1930s and has since established itself in several areas across the country. Although wild Sciuridae populations have been demonstrated to be potential reservoirs for zoonotic enteric protozoa, epidemiological studies of such pathogens in Japan are scarce. Here, we examined 423 fecal samples from Pallas's squirrels captured in Kanagawa Prefecture, Japan, using PCR and DNA sequencing to determine the occurrence of Cryptosporidium spp., Enterocytozoon bieneusi, and Blastocystis. The overall prevalence of Cryptosporidium spp., E. bieneusi, and Blastocystis was 4.3% (18/423 samples), 13.0% (55/423 samples), and 44.0% (186/423 samples), respectively. The prevalence of Blastocystis and E. bieneusi was significantly higher in spring (60.1% and 17.4%, respectively) than in winter (27.6% and 8.6%, respectively [P < 0.01]). Sequence analysis of Cryptosporidium spp., targeting the partial small subunit ribosomal RNA gene (SSU rDNA), showed 100% identity (541/541 bp) to Cryptosporidium ubiquitum, and analysis of the gp60 gene showed 99.76% (833/835 bp) identity to C. ubiquitum subtype XIIh. The sequences of the ribosomal internal transcribed spacer region of E. bieneusi and the partial SSU rDNA of Blastocystis were identified as E. bieneusi genotype SCC-2 and Blastocystis subtype 4, respectively. This study confirmed the presence of C. ubiquitum, E. bieneusi, and Blastocystis in Pallas's squirrels in Kanagawa Prefecture. Because Pallas's squirrels inhabit urban areas, living close to humans, the species may serve as a potential source of infection in human populations. IMPORTANCE Pallas's squirrel is designated a "regulated organism" under the Invasive Alien Species Act in Japan, and municipal authorities are introducing control measures to reduce its populations. It has been suggested that wild mammals may play a role in contaminating the environment with zoonotic pathogens. The present study detected the enteric pathogens Cryptosporidium ubiquitum, Enterocytozoon bieneusi, and Blastocystis in the feces of Pallas's squirrels inhabiting Kanagawa Prefecture, Japan. These pathogens persist in the environment and contaminate soils and water, which may potentially infect humans. Because Pallas's squirrels in Kanagawa Prefecture are found in urban areas, where they are in close contact with human populations, continued monitoring of zoonotic diseases among squirrel populations will be important for evaluating the significance of wildlife in pathogen transmission.


Assuntos
Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/veterinária , Criptosporidiose/epidemiologia , Microsporidiose/epidemiologia , Microsporidiose/veterinária , Sciuridae/parasitologia , Animais , Blastocystis/classificação , Blastocystis/genética , Blastocystis/isolamento & purificação , Cryptosporidium/classificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Genes de Protozoários/genética , Japão/epidemiologia , Prevalência , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética , Estações do Ano
4.
Cell Rep ; 36(9): 109633, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469733

RESUMO

In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Elongação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fator de Iniciação 5 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Fatores de Iniciação de Peptídeos/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Subunidades Ribossômicas Menores/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Folia Parasitol (Praha) ; 682021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543733

RESUMO

Parasites of the genus Cryptosporidium Tyzzer, 1910 are one of the most common protistan parasites of vertebrates. Faecal samples from 179 red foxes (Vulpes vulpes [Linnaeus]), 100 grey wolves (Canis lupus Linnaeus), 11 golden jackals (Canis aureus Linnaeus), and 63 brown bears (Ursus arctos Linnaeus) were collected in the Czech Republic, Poland and Slovakia. Samples were examined for the presence of Cryptosporidium spp. using microscopy and PCR/sequence analysis. Phylogenetic analysis based on the small subunit ribosomal RNA (SSU), actin and 60-kDa glycoprotein (gp60) genes using the maximum likelihood method revealed the presence of Cryptosporidium tyzzeri Ren, Zhao, Zhang, Ning, Jian et al., 2012 (n = 1) and C. andersoni Lindsay, Upton, Owens, Morgan, Mead et Blackburn, 2000 (n = 2) in red foxes, C. canis Fayer, Trout, Xiao, Morgan, Lai et Dubey, 2001 (n = 2) and C. ubiquitum Fayer, Santín et Macarisin, 2010 (n = 2) in grey wolves, and C. galli Pavlásek, 1999 in brown bears (n = 1) and red foxes (n = 1). Subtyping of isolates of C. ubiquitum and C. tyzzeri based on sequence analysis of gp60 showed that they belong to the XIId and IXa families, respectively. The presence of specific DNA of C. tyzzeri, C. andersoni and C. galli, which primarily infect the prey of carnivores, is probably the result of their passage through the gastrointestinal tract of the carnivores. Finding C. ubiquitum XIId in wolves may mean broadening the host spectrum of this subtype, but it remains possible this is the result of infected prey passing through the wolf - in this case deer, which is a common host of this parasite. The dog genotype of C. canis was reported for the first time in wolves.


Assuntos
Carnívoros/parasitologia , Criptosporidiose/epidemiologia , Cryptosporidium , Animais , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , República Tcheca/epidemiologia , DNA de Protozoário/genética , Cães/parasitologia , Europa (Continente)/epidemiologia , Fezes/parasitologia , Raposas/parasitologia , Genes de Protozoários , Variação Genética , Técnicas de Genotipagem , Chacais/parasitologia , Filogenia , Polônia/epidemiologia , Prevalência , Subunidades Ribossômicas Menores/genética , Eslováquia/epidemiologia , Ursidae/parasitologia , Lobos/parasitologia
6.
Parasit Vectors ; 13(1): 595, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239096

RESUMO

BACKGROUND: Blastocystis sp. is one of the most common enteric parasites of humans and animals worldwide. It is well recognized that this ubiquitous protist displays a remarkable degree of genetic diversity in the SSU rRNA gene, which is currently the main gene used for defining Blastocystis subtypes. Yet, full-length reference sequences of this gene are available for only 16 subtypes of Blastocystis in part because of the technical difficulties associated with obtaining these sequences from complex samples. METHODS: We have developed a method using Oxford Nanopore MinION long-read sequencing and universal eukaryotic primers to produce full-length (> 1800 bp) SSU rRNA gene sequences for Blastocystis. Seven Blastocystis specimens representing five subtypes (ST1, ST4, ST10, ST11, and ST14) obtained both from cultures and feces were used for validation. RESULTS: We demonstrate that this method can be used to produce highly accurate full-length sequences from both cultured and fecal DNA isolates. Full-length sequences were successfully obtained from all five subtypes including ST11 for which no full-length reference sequence currently exists and for an isolate that contained mixed ST10/ST14. CONCLUSIONS: The suitability of the use of MinION long-read sequencing technology to successfully generate full-length Blastocystis SSU rRNA gene sequences was demonstrated. The ability to produce full-length SSU rRNA gene sequences is key in understanding the role of genetic diversity in important aspects of Blastocystis biology such as transmission, host specificity, and pathogenicity.


Assuntos
Blastocystis/genética , Subunidades Ribossômicas Menores/genética , Análise de Sequência de DNA/métodos , Blastocystis/classificação , Infecções por Blastocystis/parasitologia , Primers do DNA/genética , DNA Ribossômico/genética , Fezes/parasitologia , Humanos , Nanoporos , Análise de Sequência de DNA/instrumentação
7.
BMC Evol Biol ; 20(1): 92, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727367

RESUMO

BACKGROUND: Hypotrichia are a group with the most complex morphology and morphogenesis within the ciliated protists. The classification of Gastrostyla-like species, a taxonomically difficult group of hypotrichs with a common ventral cirral pattern but various dorsal and ontogenetic patterns, is poorly understood. Hence, systematic relationships within this group and with other taxa in the subclass Hypotrichia remain unresolved. RESULTS: 18S rRNA gene sequence of a new Gastrostyla-like taxon was obtained. Phylogenetic analyses based on the 18S rRNA gene sequences indicate that this ciliate represents a new genus that is closely related to Heterourosomoida and Kleinstyla within the oxytrichid clade of the Hypotrichia. However, the position of this cluster remains unresolved. All three genera deviate from the typical oxytrichids by their incomplete (or lack of) dorsal kinety fragmentation during morphogenesis. Morphology and morphogenesis of this newly discovered form, Heterogastrostyla salina nov. gen., nov. spec., are described. Heterogastrostyla nov. gen., is characterised as follows: more than 18 fronto-ventral-transverse cirri, cirral anlagen V and VI develop pretransverse cirri, and dorsal ciliature in Urosomoida-like pattern. CONCLUSIONS: Similar to the CEUU-hypothesis about convergent evolution of urostylids and uroleptids, we speculate that the shared ventral cirral patterns of Gastrostyla-like taxa might have resulted from convergent evolution.


Assuntos
Cilióforos/classificação , Classificação , Salinidade , Solo , Animais , Sequência de Bases , Núcleo Celular/genética , DNA Ribossômico/genética , Hypotrichida/classificação , Hypotrichida/genética , Funções Verossimilhança , Morfogênese/genética , Filogenia , Subunidades Ribossômicas Menores/genética , Especificidade da Espécie
8.
Parasitol Res ; 119(8): 2733-2740, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32617726

RESUMO

Amebiasis is a worldwide parasitic zoonosis, with symptoms of abdominal discomfort, indigestion, diarrhea, and even death. However, limited information about the prevalence of Entamoeba spp. in experimental nonhuman primates (NHPs) in southwestern China is available. The objective of the current study was to investigate the frequency and species identity of Entamoeba to evaluate potential zoonotic risk factors for Entamoeba spp. infection in experimental NHPs. A total of 505 fecal samples were collected from NHPs (macaques) and analyzed by PCR analysis the small subunit rRNA (SSU rRNA) gene of Entamoeba spp. Forty-seven specimens were positive for Entamoeba spp., and the prevalence of Entamoeba spp. was 9.31% (47/505). Significant differences in the prevalence rates among the three breeds (P = 0.002 < 0.01, df = 2, χ2 = 12.33) and feed types (P = 0.001 < 0.01, df = 1, χ2 = 10.12) were observed. Altogether, four Entamoeba species, including E. dispar (57.44%), E. chattoni (29.78%), E. histolytica (6.38%), and E. coli (6.38%), were identified by DNA sequence analysis. The results suggested a low prevalence but high diversity of Entamoeba species in experimental NHPs in Yunnan Province, southwestern China. Results of this study contribute to the knowledge of the genetic characteristics of Entamoeba spp. in NHPs.


Assuntos
Entamoeba/genética , Entamebíase/veterinária , Macaca/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Animais , Animais de Laboratório , China/epidemiologia , DNA de Protozoário/genética , Entamoeba/classificação , Entamoeba/isolamento & purificação , Entamebíase/epidemiologia , Entamebíase/parasitologia , Entamebíase/transmissão , Fezes/parasitologia , Epidemiologia Molecular , Prevalência , Infecções Protozoárias em Animais/transmissão , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética , Análise de Sequência de DNA
9.
Parasitol Res ; 119(8): 2741-2745, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32577820

RESUMO

Blastocystis is a zoonotic protozoan parasite frequently identified in the intestinal tract of humans and a vast variety of animals, worldwide. Here, we assessed the prevalence of Blastocystis and its subtypes in stool samples of raccoons. Stool samples from 30 raccoons were collected. Total DNA was extracted, and the barcoding region of the small subunit ribosomal rRNA (SSU rRNA) gene was amplified and sequenced. Specific fragment for Blastocystis was successfully amplified in five samples (16.66%). Sequencing analysis revealed ST1, ST2, and ST3 among 1, 2, and 2 Blastocystis-positive samples. Our results documented the presence of Blastocystis subtypes 1-3 in raccoons. Subtype 1 showed higher similarity to the human isolates of Blastocystis. However, it seems that raccoons may emerge as reservoirs for Blastocystis and may be linked to zoonotic transmission of the protist.


Assuntos
Infecções por Blastocystis/veterinária , Blastocystis/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Guaxinins/parasitologia , Animais , Sequência de Bases , Blastocystis/classificação , Blastocystis/genética , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/parasitologia , Infecções por Blastocystis/transmissão , DNA de Protozoário/genética , Fezes/parasitologia , Variação Genética , Genótipo , Irã (Geográfico)/epidemiologia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/transmissão , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética
10.
Parasitol Res ; 119(8): 2431-2438, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394002

RESUMO

The specimens of Trachinus draco collected from the Bay of Bizerte were found to be infected with a new Ceratomyxa species described as Ceratomyxa draconis n. sp. The sequence of small subunit ribosomal RNA gene obtained in this study differs from other Ceratomyxa sequences available in GenBank. Mature spores of this species were elongated and crescent-shaped in sutural view, measuring 7.4 ± 0.77 (6.4-8.0) µm in thickness and 30.8 ± 1.65 (28.8-32.8) µm in width. The polar capsules were spherical, equal in size, and measuring 3.3 ± 0.2 (3.6-4.0) µm in diameter. The Ceratomyxa draconis n. sp. showed a clearly seasonal variation of prevalence with highest prevalence noted during summer months.


Assuntos
Doenças dos Peixes/parasitologia , Myxozoa , Doenças Parasitárias em Animais/parasitologia , Perciformes/parasitologia , Animais , Baías , DNA Ribossômico/genética , Vesícula Biliar/parasitologia , Myxozoa/anatomia & histologia , Myxozoa/classificação , Myxozoa/genética , Filogenia , Subunidades Ribossômicas Menores/genética , Estações do Ano , Tunísia/epidemiologia
11.
RNA ; 26(9): 1268-1282, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467310

RESUMO

PPR proteins are a diverse family of RNA binding factors found in all Eukaryotic lineages. They perform multiple functions in the expression of organellar genes, mostly on the post-transcriptional level. PPR proteins are also significant determinants of evolutionary nucleo-organellar compatibility. Plant PPR proteins recognize their RNA substrates using a simple modular code. No target sequences recognized by animal or yeast PPR proteins were identified prior to the present study, making it impossible to assess whether this plant PPR code is conserved in other organisms. Dmr1p (Ccm1p, Ygr150cp) is a S. cerevisiae PPR protein essential for mitochondrial gene expression and involved in the stability of 15S ribosomal RNA. We demonstrate that in vitro Dmr1p specifically binds a motif composed of multiple AUA repeats occurring twice in the 15S rRNA sequence as the minimal 14 nt (AUA)4AU or longer (AUA)7 variant. Short RNA fragments containing this motif are protected by Dmr1p from exoribonucleolytic activity in vitro. Presence of the identified motif in mtDNA of different yeast species correlates with the compatibility between their Dmr1p orthologs and S. cerevisiae mtDNA. RNA recognition by Dmr1p is likely based on a rudimentary form of a PPR code specifying U at every third position, and depends on other factors, like RNA structure.


Assuntos
Proteínas Mitocondriais/genética , Motivos de Nucleotídeos/genética , RNA Ribossômico/genética , RNA/genética , Subunidades Ribossômicas Menores/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Expressão Gênica/genética , Mitocôndrias/genética , Ribossomos/genética
12.
Mol Phylogenet Evol ; 149: 106839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325195

RESUMO

Alveolates are a major supergroup of eukaryotes encompassing more than ten thousand free-living and parasitic species, including medically, ecologically, and economically important apicomplexans, dinoflagellates, and ciliates. These three groups are among the most widespread eukaryotes on Earth, and their environmental success can be linked to unique innovations that emerged early in each group. Understanding the emergence of these well-studied and diverse groups and their innovations has relied heavily on the discovery and characterization of early-branching relatives, which allow ancestral states to be inferred with much greater confidence. Here we report the phylogenomic analyses of 313 eukaryote protein-coding genes from transcriptomes of three members of one such group, the colponemids (Colponemidia), which support their monophyly and position as the sister lineage to all other known alveolates. Colponemid-related sequences from environmental surveys and our microscopical observations show that colponemids are not common in nature, but they are diverse and widespread in freshwater habitats around the world. Studied colponemids possess two types of extrusive organelles (trichocysts or toxicysts) for active hunting of other unicellular eukaryotes and potentially play an important role in microbial food webs. Colponemids have generally plesiomorphic morphology and illustrate the ancestral state of Alveolata. We further discuss their importance in understanding the evolution of alveolates and the origin of myzocytosis and plastids.


Assuntos
Alveolados/classificação , Comportamento Predatório/fisiologia , Alveolados/genética , Alveolados/ultraestrutura , Animais , Biodiversidade , Geografia , Filogenia , Subunidades Ribossômicas Menores/genética
13.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32123037

RESUMO

When nutrients become scarce, bacteria can enter an extended state of quiescence. A major challenge of this state is how to preserve ribosomes for the return to favorable conditions. Here, we show that the ribosome dimerization protein hibernation-promoting factor (HPF) functions to protect essential ribosomal proteins. Ribosomes isolated from strains lacking HPF (Δhpf) or encoding a mutant allele of HPF that binds the ribosome but does not mediate dimerization were substantially depleted of the small subunit proteins S2 and S3. Strikingly, these proteins are located directly at the ribosome dimer interface. We used single-particle cryo-electron microscopy (cryo-EM) to further characterize these ribosomes and observed that a high percentage of ribosomes were missing S2, S3, or both. These data support a model in which the ribosome dimerization activity of HPF evolved to protect labile proteins that are essential for ribosome function. HPF is almost universally conserved in bacteria, and HPF deletions in diverse species exhibit decreased viability during starvation. Our data provide mechanistic insight into this phenotype and establish a mechanism for how HPF protects ribosomes during quiescence.IMPORTANCE The formation of ribosome dimers during periods of dormancy is widespread among bacteria. Dimerization is typically mediated by a single protein, hibernation-promoting factor (HPF). Bacteria lacking HPF exhibit strong defects in viability and pathogenesis and, in some species, extreme loss of rRNA. The mechanistic basis of these phenotypes has not been determined. Here, we report that HPF from the Gram-positive bacterium Bacillus subtilis preserves ribosomes by preventing the loss of essential ribosomal proteins at the dimer interface. This protection may explain phenotypes associated with the loss of HPF, since ribosome protection would aid survival during nutrient limitation and impart a strong selective advantage when the bacterial cell rapidly reinitiates growth in the presence of sufficient nutrients.


Assuntos
Bacillus subtilis/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Dimerização , Subunidades Ribossômicas Menores/química , Subunidades Ribossômicas Menores/genética , Ribossomos/química , Ribossomos/genética
14.
Parasitol Res ; 119(3): 893-901, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31938889

RESUMO

We surveyed introduced yellow perch Perca flavescens (Mitchill, 1814) from the Willamette River, OR, USA, to determine if these fish have co-introduced myxosporean parasites. Mature parasite myxospores were observed in brains of 3/19 fish, and were morphologically and molecularly consistent with Myxobolus neurophilus (Guilford 1963), a parasite known from yellow perch in their native range. We identified another Myxobolus species from the gill filaments of 1/22 fish. The spores from the gill filaments were oval-shaped, 11.7 (10.7-12.3) µm long × 8.6 (7.7-9.0) µm wide × 5.2 (4.6-5.6) µm thick, with two oval-shaped polar capsules 5.7 (5.1-6.5) µm × 2.7 (2.4-3.2) µm, each containing a polar tubule with 8-9 turns. Small-subunit ribosomal DNA sequences from each of four plasmodia were identical, and 4.0% different (over 1800 nucleotides) from the closest known myxosporeans. Interestingly, these sequences had overlapping peaks in their chromatograms, which suggested that DNA from multiple species was present. Hence, we isolated and sequenced three individual myxospores and found that they too had mixed chromatograms, which indicated presence of at least two sequence types of small-subunit ribosomal DNA in each spore (GenBank accession MK592012, MK592013), a rare character among described myxosporeans. The spore morphology, morphometry, tissue tropism, and DNA sequence supported a diagnosis of a novel species, Myxobolus doubleae n. sp. This parasite is unknown from yellow perch in its native range, despite extensive historical surveys, which suggests that introduced yellow perch might have acquired an endemic Myxobolus species via spillback from another fish host.


Assuntos
Doenças dos Peixes/parasitologia , Myxobolus/isolamento & purificação , Doenças Parasitárias em Animais/parasitologia , Percas/parasitologia , Animais , DNA de Protozoário/genética , DNA Ribossômico/genética , Brânquias/parasitologia , Filogenia , Subunidades Ribossômicas Menores/genética , Rios/parasitologia , Esporos de Protozoários
15.
Parasitol Res ; 119(1): 85-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31768684

RESUMO

Examination of 35 barramundi (Lates calcarifer) from aquaculture cages in Setiu Wetland, Malaysia, revealed a single fish infected with three Henneguya spp. (Cnidaria: Myxosporea). Characterization of the infections using tissue tropism, myxospore morphology and morphometry and 18S rDNA sequencing supported description of three new species: Henneguya setiuensis n. sp., Henneguya voronini n. sp. and H. calcarifer n. sp. Myxospores of all three species had typical Henneguya morphology, with two polar capsules in the plane of the suture, an oval spore body, smooth valve cell surfaces, and two caudal appendages. Spores were morphometrically similar, and many dimensions overlapped, but H. voronini n. sp. had shorter caudal appendages compared with H. calcarifer n. sp. and H. setiuensis n. sp. Gross tissue tropism distinguished the muscle parasite H. calcarifer n. sp. from gill parasites H. setiuensis n. sp. and H. voronini n. sp.; and these latter two species were further separable by fine-scale location of developing plasmodia, which were intra-lamellar for H. setiuensis n. sp. and basal to the filaments for H. voronini n. sp. small subunit ribosomal DNA sequences distinguished all three species: the two gill species H. setiuensis n. sp. and H voronini n. sp. were only 88% similar (over 1708 bp), whereas the muscle species H. calcarifer n. sp. was most similar to H. voronini n. sp. (98% over 1696 bp). None of the three novel species was more than 90% similar to any known myxosporean sequence in GenBank. Low infection prevalence of these myxosporeans and lack of obvious tissue pathology from developing plasmodia suggested none of these parasites are currently a problem for barramundi culture in Setiu Wetland; however additional surveys of fish, particularly at different times of the year, would be informative for better risk assessment.


Assuntos
Doenças dos Peixes/parasitologia , Myxozoa/classificação , Myxozoa/isolamento & purificação , Doenças Parasitárias em Animais/diagnóstico , Doenças Parasitárias em Animais/parasitologia , Perciformes/parasitologia , Animais , Aquicultura , Cnidários/classificação , DNA Ribossômico/genética , Doenças dos Peixes/diagnóstico , Peixes , Brânquias/parasitologia , Malásia , Filogenia , RNA Ribossômico 18S/genética , Subunidades Ribossômicas Menores/genética , Esporos/genética , Áreas Alagadas
16.
Parasitol Res ; 119(1): 243-248, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754858

RESUMO

Cryptosporidiosis has been reported as an important cause of neonatal diarrhea and mortality in cattle, sheep, and other ruminants, but its impact on alpaca health has not been studied thoroughly. In this study, we have determined the prevalence and evaluated the role of cryptosporidiosis as a risk factor for diarrhea occurrence in newborn alpacas. During the calving season (January-March) of 2006, stool specimens (N = 1312) were collected from 24 herds of newborn alpacas in Puno and Cuzco, departments that account for the largest populations of alpacas in Peru. All the specimens were microscopically screened for Cryptosporidium spp. using the acid-fast technique. The association between Cryptosporidium detection and diarrhea was analyzed using χ2 test and generalized lineal model. Cryptosporidium species were determined by PCR-RFLP analysis of the small subunit rRNA gene. Cryptosporidium oocysts were detected in 159 of 1312 (12.4%) newborn alpacas. Results of the analyses demonstrated that crypstosporidiosis was significantly associated with diarrhea (PR = 3.84; CI95% 2.54-5.81; p < 0.0001). Only Cryptosporidium parvum was detected in the 153 Cryptosporidium-infected animals. Thus, there is an association of C. parvum infection with diarrhea in neonatal alpacas.


Assuntos
Camelídeos Americanos/parasitologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/isolamento & purificação , Diarreia/veterinária , Animais , Animais Recém-Nascidos , Cryptosporidium parvum/classificação , Cryptosporidium parvum/citologia , Cryptosporidium parvum/genética , Diarreia/epidemiologia , Diarreia/parasitologia , Fezes/parasitologia , Oocistos/citologia , Peru/epidemiologia , Prevalência , Subunidades Ribossômicas Menores/genética , Fatores de Risco
17.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510048

RESUMO

Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential 'scanning' of the 5' untranslated regions (UTRs). Scanning through the 5'UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5'UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured ß-globin sequences in the 5'UTR but not that of an mRNA with a poly(A) sequence as the 5'UTR. By contrast, the nonhydrolysable ATP analogue ß,γ-imidoadenosine 5'-triphosphate (AMP-PNP) inhibited translation irrespective of the 5'UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA ('toeprinting'), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This '-8 nt toeprint' was seen with mRNA 5'UTRs of different length, sequence and structure potential. Importantly, the '-8 nt toeprint' was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5'UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5'UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.


Assuntos
Regiões 5' não Traduzidas/genética , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/genética , Subunidades Ribossômicas Menores/genética , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Animais , Linhagem Celular Tumoral , Sistema Livre de Células , Fator de Iniciação 4F em Eucariotos/metabolismo , Camundongos , Modelos Genéticos , RNA Helicases/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
18.
Nucleic Acids Res ; 47(15): 8301-8317, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31265110

RESUMO

Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era's role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Sequência de Bases , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura
19.
Nucleic Acids Res ; 47(14): 7548-7563, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31188444

RESUMO

Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.


Assuntos
RNA Helicases DEAD-box/química , Domínios Proteicos , Subunidades Ribossômicas Menores/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Pareamento de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Modelos Moleculares , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
FEBS J ; 286(21): 4245-4260, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199072

RESUMO

The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD  = 0.011 µm) with respect to GTP (KD  = 0.16 µm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT  = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.


Assuntos
Farmacorresistência Bacteriana/genética , GTP Fosfo-Hidrolases/ultraestrutura , Pseudomonas aeruginosa/metabolismo , Subunidades Ribossômicas Menores/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Sítios de Ligação , Escherichia coli/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Guanosina Difosfato/química , Cinética , Conformação Molecular , Ligação Proteica/genética , Conformação Proteica , Pseudomonas aeruginosa/enzimologia , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...